If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5x-102=0
a = 1; b = 5; c = -102;
Δ = b2-4ac
Δ = 52-4·1·(-102)
Δ = 433
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{433}}{2*1}=\frac{-5-\sqrt{433}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{433}}{2*1}=\frac{-5+\sqrt{433}}{2} $
| 5/6k=1/15-11/14 | | 2(5x^2-9)=-3 | | A=3.14r^2r=12 | | 3x-4=2×+8 | | 8+5p=-4p-1 | | (w×5)-10=60 | | 6xx5=17 | | 14y+y-3=147 | | 18-y=56 | | n^2-n-25=5 | | 5/6x+8/15=2/5 | | x/9=2/7 | | 1.4-7x-3.6-2x=-8x+4.4 | | 14y+y-3=14 | | -3x2+12=0 | | 4(3^2x)-5=29 | | (28x-20)=148 | | H=16t^2+138t+55 | | X-12=9x+8 | | 2=-74+14x | | 0.8x-1.33=2.33x-3 | | 2=−74+14x | | 8=(w-5) | | 4/5x-1/1/3=2/1/3x-3 | | x(-7.9)=-0.9 | | 27=x(3-2x) | | 7x+4=12x-16 | | 27=x(32x) | | 2+(x+4)=(x+4)+4 | | 900=y2 | | 3(5x-2)=15x+6 | | 2+(x+4)=(x+4)+2 |